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NOMENCLATURE

b boundary layer parameter

C friction coefficient
f
c absolute velocity component, chord

E entrainment rate

F force defect thickness

f blade force, wake model (eq (7.4))

g wake model (eq (7.7))

H shape factor

H Head's shape factor

h annulus height, metric coefficient

m meridional coordinate

n coordinate normal to the end-walls

p static pressure

R ij radii of curvature (appendix A)

r radius, recovery factor

s streamwise coordinate, pitch

T temperature

T total temperature Z_
t

T recovery temperature
r
T* Eckert reference temperature

t transverse coordinate

tc  tip clearance

U wheel speed

u pitchwise coordinate

W velocity in the blade reference system

w relative velocity component €.I
3
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x orthogonal coordinate

a radial flow angle

8 passage flow angle

Y stagger angle

6 physical boundary layer thickness
1*

6 displacement thickness

E skewing angle, diffusion coefficient

E wall skewing angle

n u/6

e momentum thickness, angular coordinate N

X correction momentum thickness

v viscosoty, eddy viscosity

p density

a solidity, wall inclination angle (fig 3.1)

T shear stress

W vorticity vector

Subscripts

k kinematic

w at the wall

m,n,u in meridional coordinates (fig. 3.1)

s,n,t in streamline coordinates (fig. 6.1)

sec secondary flow

ewbl end-wall boundary layer

inv inviscid

Superscripts

inviscid flow parameter

passage-averaged value

expressed in s,t coordinates (figure 6.1)

Abbreviations

EWBL end-wall boundary layer "."

*PBL profile boundary layer

3D three-dimensional
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1. INTRODUCTION

The main objective of the present research is to provide a method for the

prediction of detailed flow properties in a multistage axial compressor, in
particular the secondary flow patterns and the radial mixing process.

The background of the present work lies in a Quasi 3D approach [I]. in
this approach, correlations are used to compute the passage-averaged profile

losses and deviations. End-wall boundary layers (EWBL) are predicted
through an 3D integral method where end-wall secondary flows and clearance
effects are introduced [2,3].

In this EWBL approach, it is assumed that all the secondary and tip
clearance effects originate inside the EWBL and extra losses are taken into
account separately when computing the machine efficiency [3]. However, the

interaction between the secondary flows and the main compressor flow is
stronger than a simple efficiency correction [4,5,6,7,8]. The present trend
towards higher stage loadings and lower aspect ratio's enhances the effect
of radial redistributions but current axisymmetric calculation methods are
not able to account for it. This interaction is illustrated on figure 1.1
where a radial distribution of temperature is shown with and without radial
redistribution effects.

In the present project, a technique for the determination of the radial
mixing is being developed. This technique is based on the determination of

the radial flow components as obtained from integral boundary layer and wake
predictions.
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Figure 1.1 Radial redistribution of total temperature 8

Adkins & Smith [8] presented a basic formulation for the determination or
radial mixing effects. In their approach, a large number of parameter:6
determining the secondary flow are to be chosen on an empirical basis. :n
the present approach, the velocity profile families built in the integral
boundary layers and wakes lead to a prediction of most of these parameters
and it allows the reconstruction of the secondary flow pattern, with much
less additional parameters.

As shown by Adkins and Smith [83, the r3dial mixing can be expr-ss p

through a diffusion type equation where the 'diffusion' or 'mixing'

- 5 "



coefficient is a function of the rms radial velocity. When the radial
velocity is well known this mixing coefficient can be easily estimated.

Gallimore and Cumpsty [6] showed that mixing due to turbulent diffusion may

be as important as mixing due to radial convection and an additional %e.

turbulent mixing coefficient is to be considered. When the total mixing
coefficient is known, the mixing equation can easily be solved using a

finite difference or finite element method with Neumann type boundary
conditions.

. %

2. HISTORICAL BACKGROUND

During the last twenty years, the design requirements for axial

compressors have increased considerably calling for more advanced

computational methods. However, because of the high complexity of the flow
pattern, no complete three-dimensional calculat-ion methods can presently be
developed which would account for multistage configurations. The flow is to
be computed by parts which interact with each other.

The current approach consists in the splitting of the turbomachine flow

into two two-dimensional flows []. The first flow is considered in a
circumferential blade-to-blade surface (SI) and the second is the

circumferentially averaged meridional flow (S2). Different secondary
effects which are not considered in these Si and S2 flows are to be computed

separately and superposed in an interactive way. The different secondary
flows are summarised on figure 2.1. These flows occur in a surface normal

to Si and S2, which is not considered in the basic Quasi 3D approach.

In the following, the different contributions shown on figure 2.1 will be

reviewed separately (sections 2.1 to 2.6). Two different approaches for the
determination of the secondary flows are reviewed in section 2.7. Section
2.8 discusses radial mixing processes and section 2.9 is a brief review of
experimental work in this field.

2.1 Passage vortex (contributions 1,3,4)

The passage vortex is a well known secondary flow component in
turbomachine flows. Its mechanism has been investigated a first time by

Carter and Cohen for uniform flows with thin boundary layers [26] and by
Squire and Winter for nonuniform flows [27]. It was further investigated by

Hawthorne [12] and A.G. Smith [13] for cascades and by Dixon '14] for

rotating blade rows.

The passage vortex is basically a streamwise vorticity component caused by

the deflection of a non-uniform mainstream velocity. It can be obtained
from the conservation of momentum in a steady, invisci: incomrpressible flui-
[26,27]

V A (W A W) 0.

The inviscid equation (2.1) is often applied over the whole passage,
including the viscous boundary layers. in a different iprnarc (see 2.7:,,
the flow is considered as a superposition of (i) a main inviscid primary
flow, and (ii) viscous boundary layer flows which 3re treated tnrough

6
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Flow: Origin: ....I Main passage vortex Flow non-uniformities

2 Trailing shed and filament vortex Spanwise changes in circulation
3 End wall boundary cross flow Boundary layer overturning
4 End wall boundary layer passage vortex Boundary layer overturning
5 Tip clearance flow Tip clearance pressure difference
6 Profile boundary layer radial flow Centrifugation
7 Wake radial flow Centrifugation
8 Radial diffusion Turbulence

Figure 2.1 Secondary flows

integral boundary layer methods. In the latter case, a distinction is to be

made between a 'main passage vortex' caused by an overall non-uniform inlet

flow as predicted by a through-flow computation, and an 'end-wall boundary

layer passage vortex'.

2.2 Trailing edge vorticity (contribution 2)

The vortex sheet leaving the trailing edge of the blade has two
components the trailing filament and the trailing shed vorticities. The

shed vorticity is due to the changes in circulation along the span, the
filament vorticity is due to the stretching of vortex filaments and is a

result of non-uniformities in the inlet flow. Circulation changes can be
due either to an overall non-free vortex behaviour of the passage "low,
either to specific changes in blade loading inside the end-wall boundary

layers.

These components were investigated a first time by Hawthorne 1 an-' ae

and Marsh [29] on the basis of inviscid flow models.

-7- -
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2.3 Tip clearance flows (contribution 5)

Tip clearance flows contribute to the secondary flow motion in an
important way. They affect the passage vorte by modifying the flow turning
and the trailing edge vortex through a change in blade loading. Smith [11]
proposed an inviscid approach where tip clearance and leakage secondary
flows are taken into account. Several empirical constants were introduced.
In an approach where boundary layers flows are considered separately, tip
clearance effects can be included in the integral boundary layer equations"-
[3] (see 2.7).

2.4 Profile boundary layer radial flows (contribution 6)

Boundary layers along turbomachine blades are three dimensional and
contribute to the radial convection. Both experimental and theoretical
information about these radial flows is poor. Adkins and Smith [8]
estimated these radial flows by solving the local conservation of radial
momentum along the blade, introducing two empirical constants. The radial
velocity was found to be a direct consequence of the boundary layer velocity
gradient. Their development is inviscid, in the same way as was done for
the passage vortex. Whitfield and Keith [30] used the same base but
included the blade loading effects by means of the loss correlations of Koch
and Smith.

Viscous 3D boundary layer applications on turbomachine blades are almost
inexistant. More experimental information has recently been made available
by Laksminara~ana and Popovski [24].

2.5 Wake radial flows (contribution 7)

The wake can be considered as an important element in the total radial
flow analysis. Peak values in radial velocity are observed in the near e.
wake, where very low velocities may induce a high centrifugation. Adkins .6
and Smith [8] and Whitfield and Keith [30] treated the wake by writing the
mainstream and radial momentum conservation laws along the wake center. The
total amount of radial flow is found by modeling the wake profiles. Since
symmetric wake models are used, there is no ability to simulate asymmetric
radial wake profiles. Hah and Lakshminarayana [31] made full turbulent 3D
computations in asymmetric wakes with radial flows. These computations are
in good agreement with detailed experiments, but their cost may be in
disproportion to the gain in useful information.

2.6 Radial diffusion (contribution 8)

All the above radial flows contribute to radial mixing by a convection
mechanism. Gallimore and Cumpsty [6,7] showed that at least in their test
compressor the radial energy redistribution is due mainly to turbulent
diffusion. They based their conclusion on the facts (i) that the observed
mixing was isotropic [6] and (ii) that the measured turbulent energy
production is almost fully compensated by turbulent energy diffusion, which
means that convection phenomena are of less importance [7].

-8-



2.7 Two approaches for secondary flows

From the the above discussion on secondary flows, it follows that a part A

of them originate in three viscous layers :

(i) the end-wall boundary 
layers 

%

(ii) the profile boundary layers
(iii) the wakes

The cross flows in these layers may be estimated in two ways

(i) solving local inviscid equations over the whole span, including the
viscous layers

(ii) exclude the viscous layers from the inviscid solution and
solving them separately by means of integral boundary layer
and wake equations

The first approach has been referred to in sections 2.1 to 2.4 [8,11,12,
13,14,26,27,28,29,30,31]. A large amount of such inviscid secondary flow 71
approaches is reviewed in the AGARD conference proceedings 214 (1977) about
'Secondary Flows in Turbomachines' [25].

In the integral boundary layer and wake approach, secondary flows are
predicted in a less detailed way, whereas viscous effects can be taken into
account. Secondary flows are characterised by some integral cross flow
thicknesses which quantify a total amount of secondary mass and momentum
flow.

Early 3D end-wall boundary layer (EWBL) equations were proposed by Cooke and
Hall [15] and Horlock [16]. Smith [17] showed the presence of variations in
blade loading inside the boundary layers, which can affect the secondary
flow in an important way, and he showed the importance of the tip clearance
effects. Mellor & Wood [9] and Horlock & Perkins [18] took these effects
into account through the introduction of force defects. De Ruyck & Hirsch
[3] extended this theory by introducing (i) new correlations for the force
defects and (ii) profile model equations suited for turbomachine EWBL flows,
which allow the reconstruction of complete spanwise pitch averaged cross
flow profiles. Only two empirical constants which are extensively
calibrated are present in this method.

Detailed 3D profile boundary layer (PBL) and wake equations are less profuse
and as a f rst step in the present project, 3D boundary layer and wake
equations were developed in fully curvilinear coordinates. This development
is applied in a coherent way for EWBL as well as PBL and wakes. Recent
theoretical developments of full 3D boundary layer equations are summarised
in [25]. This refence discusses the problem of separations, a problem which
is not yet treated in the present report, but which is to be included in the
future since it appears from the available test cases that the trailing edge
separation plays an important role in the near wake, including the induction
of radial flows.

Although inviscid theories are important for the understanding of
secondary flows, these theories are practically not applied in multistage
design codes, except for radial flows along profiles and in wakes. The
present proposal therefore seeks for a complete integral ap'roach for the
secondary flow description. Integral secondary flow results are next used
as input for the description of the radial mixing process.

-9-



2.8 Radial mixing process [8]

Adkins & Smith [8] proposed a diffusion type mixing equation whicn can be

applied for the mixing of any flow parameter. The 'diffusion' or 'mixing'

coefficient is determined from the knowledge of the secondary flow, which in

their case is obtained from Smith's inviscid secondary flow approach. Some
applications in [8] show the importance and the correct behaviour of this
mixing theory. More recently, Gallimore and Cumpsty [7] presented much
simpler computations based on the turbulent mixing only. Whitfiell and
Keith [30] made a more clear distinction between convection and diffusion
mechanisms. The did not consider the convection as being isotropic, as was
done by Adkins through the use of a diffusion type equation. They rather"/,
traced the flow particles and obtained non-isotropic flow property
migrations in the spanwise direction.

The three above approaches are validaded by experiments, although the

mechanisms they use are very different. This validation is however obtained
through the calibration of empirical constants, which probably compensates

the shortcomings of these approaches. In order to clarify this situation,
one of the scopes of the present work will be to determine the relative
importance of mixing through convection and mixing through turbulent
diffusion. The diffusion type equation of Adkins & Smith will be applied in
the present approach and any flow property 0 will be radially redistributed
through

2 (2.1)
m n

where, combining convection and diffusion,

W d6 + turbulent diffusion coefficient (2.2)
pitch m

w and w denote the meridional and radial velocities, e the angular
m n
coordinate. Equation (2.1) does not include mixing losses, it only
expresses the mixing process. It can easily be solved through a numerical
scheme. The energy conservation is obtained through a Neumann-type boundary
condition which expresses that there is no enthalpy or entropy flux through
the end-walls. Mixing losses can eventually be added through source terms
in equation 2.1. S

2.9 Experimental work ,'

Besides theoretical developments, experimental data can be found. .

classical test case is the Larguier Rotor [5] tested at ONERA. Test data
are available downstream of a rotor blade row, showing a radial flow pre file

which can be interpreted as a superposition of the different secondary flow
contributions [8]. Dring et al [4] made extensive experiments at four
stations downstream of a rotor blade row, at several radial positions, 3nd-

at four different flow rates. Other wake dati are av3ilable from the
Pennsylvania State University [32,33]. Two three-stage compressors,
differing primarily in aspect ratio, were designed and tested at Pratt ,
Whitney Aircraft under NASA sponsorship [34,35'. The effects of mixing 3re
seen to be very strong for both configurations (see figure .

-10- 0



Less detailed data are available for the profile boundary layer radial

flows. Recently, data were made available by Lakhsminarayana and Popovski
[2 4 ]. Extensive data are presented at both pressure and suction side of a

compressor rotor blade, at five radial positions and three axial stations.

..

3. APPROACH

In the following sections it will be discussed in which way the different

radial flows (figure 2.1) will be investigated. There is an essential

difference with the Adkins and Smith [8] and Whitfield and Keith [30]

approaches through the use of integral methods, reducing the amount of

empirical constants. The approach which will be used for the radial mixing

process will be based on equations (2.1) and (2.2). The prezent report is

limited to the radial flow prediction. "U

The strategy which is used is illustrated on figure 3.1. Four steps can

be considered in the global flow computation :"-

(i) Through flow computation

(ii) Computation of end-wall boundary layers

(iii) Computation of the passage radial flows

(iv) Computation of profile boundary layers and wakes

.

All the equations are expressed in a meridional coordinate system m,n,u

which is shown on figure 3.2. The secondary flows are determined in a

surface normal to the SI and S2 surfaces, that is surfaces of constant

mericional coordinate m.

3.1 Through flow computation

The computation of the radial effects needs input from the main flow

computations, or eventually from experiment. in practice a Quasi 3D

computation is performed which yields the spanwise passage averaged profiles

of all the flow properties. Amongst these are the meridional ano angular

velocity components w and w , and the unmixed temperature profiles. Them u
velocity profiles are input for the next step in the calculation prccedure.

.4I_



A THROUGH FLOW COMPUTATION:
A __ _ __ _ _ __ _ _ __ _ _

Wm passage averaged velocities

END-WALL BOUNDARY LAYER COMPUTATION:

A

Wm passage averaged velocities including
- EWBL viscous effects
- EWBL cross flows
- Tip clearance flows
see equationss (3.1) and (3.2)

PASSAGE RADIAL FLOW COMPUTATION:

Passage radial flows including 
-.

+ - All EWBL effects
n- Main flow non-uniformity effects

- Circulation changes
see equation (3.8)

PROFILE BOUNDARY LAYER
AND WAKE COMPUTATION:

Detailed radial velocities including
profile boundary layer and wake radial flows

... -

Figure 3.1 Strategy for the radial flow computation

-12-
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hlipwall

hubi" -Al I

f igure 3.2 :meridional coordinate system :::

3.2 End-wall boundary layer computation'-"

The EWBL calculation method as presented in [3] can directly be Used. In "

this method passage averaged EWBL equations are fully developed in the ..P'

curvilinear meridional coordinate system, including all curvature, Coriolis .]

and centrifugal effects. Appropriate EWBL velocity profiles, developed for

the particular case of a turbomachine, are used."Z,-

The inclusion of the boundary layer equations yield passage averaged "'

velocity profiles w mand 4 where

wm  w -w (3-1)m m .ewbl " .

wu wu wu. ewbliL.-

Ww l and uwb are the velocity defects present in the boundary layers.".--,

According to [3], the resulting passage averaged secondary flow in the ",

surface m-cte is given by-,

w- -w tgB "''
u. sec.ewbl wu wm .

where toB - r- -

,

-13-
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This secondary velocity is zero in case of a collateral EWBL flow ( = 8) It

implicitly takes into account the effects of : V

- viscosity

- tip clearance

- passage and trailing edge vorticities caused by EWBL velocity defects.

The EWBL calculation procedure is summarized in section 4.

3.3 Passage radial flow computation

The radial flows inside the passage are found from the incompressible

inviscid vorticity equation

- (= 03.

Since the secondary flow is searched in surfaces m=cte, only the meridional

component of the secondary vorticity is relevant

rw 3w
I l u I n 0  (3.5)m r n- F 36

From the previous steps, some information is available about the passage

average of the velocity w, whereas w is the searched velocity component.U n

The idea of the present approach is to passage average equations (3.4)

and (3.5). This yields following equations (section 5)

3,wm  - 3w
awm F [w ] DW (3.6)T F am ' [Wn] Wu' 3n

where

W rw - n  (3.7)-"

The passage averaged velocity w can be decomposed as
u

W - W + w + w(3.8) .u u u.sec.ewbl Wu.sec.inv

[w I is de difference in radial velocity between pressure and suction side
*~ +~

of the passage (see figure 3.1). Equation (3.8) superposes the velocities

from the through flow computation (section 3.1), the EWBL flow (section 3.2)

1~4%;&Noy:



and main passage secondary flow.

Equations (3.6) to (3.8) contain four unknowns W m w 1+9 w and

w The continuity in the secondary flow surface is used as fourthu. see.inv"

equation to obtain closure. Some pitchwise modeling of the secondary flow 4-

velocities is required at this point, since pitchwise information is lost

through the passage averaging. A linear behaviour for w and a quadratic
n

behaviour for w yields [9]
u

8 -

Tn 1 nl- s wu.sec(39

From equations (3.6) to (3.9), it is possible to reconstruct the radial

velocities including

- all EWBL effects through wu.sec.ewbl

- main passage effects through 3n w m

- main circulation changes through n rw
n u

The only assumptions made consist in some pitchwise modelling of the

secondary flow velocities, which results in an approximation in equation
(3.9).

3.4 Blade profile boundary layers and wakes

These flows originate mainly from the centrifugation and coriolis effects V

in blade profiles and blade wakes. The corresponding 3D boundary layer

equations automatically include these effects. In the present wake

approach, pressure and suction side of the wake are treated separately and

the concept of 'peak velocities' is not used. The reason for this is that

wake profile may be very asymmetric. Pressure and suction side radial flows

may even have opposite signs (Dring data [4]). An asymmetric 3D wake model

equation is introduced.

When this last step is performed, radial flows are reconstructed anywhere

in the passage flow and the radial mixing process through radial convection

can be started. -,

'*.*-..°



4. END-WALL BOUNDARY LAYER COMPUTATIONS

The used method originates from Mellor and Wood's approach [9] where

rigorous integral boundary layer equations were written for the end-wall -

boundary layers, including force defect thicknesses. In this work, % %

simplified assumptions such as constant shape factor or skin friction were

made and the equations were integrated from inlet to outlet of a blade row.

This approach was extended by De Ruyck & Hirsch [3] to include velocity

profile models and correlations for secondary flow and tip clearance effects

through the so called defect forces.

The End-wall boundary theory presently used has been presented

extensively in [2] and is briefly summarized below.

The basic equations are written in the meridional coordinate system m,n,u -

(fig 3.2). 'c' denotes an absolute velocity and 'w' a relative velocity

component.

The boundary layer momentum and entrainment equations are

dc
d 2 * m

prc + prc 6 -

m mm m mdm
(4.1)

- pc sino (6*tga + rT rF

d m 2* dc

- prc + prc 6 d--
5dM m um m mdm

(4.2)

2 (*+ pc sina (6mtga + u) = ru + rF -.

I d r E(Hk) ('.3)

rpc dmrpcm(6 - 6 ) =coc
rpcm  m m Cosa

Eqs (4.1) to (4.3) are written in the absolute reference system. The

boundary layer thicknesses in these equations are defined as

W . W. P w
8 )--- f -) dn (4.4)
ij~ w w pwm

m m 
_.-m
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f0  ~-- - ) dn (45

m m

These thicknesses are defined in the wall reference system. The velocities

with an overhead carat (^) denote the 'outer' or linviscid! reference

velocities. Corrections for variations of these 'inviscid' values with tr-e

distance from the wall are not considered [211. The velocity ratios are

modelled through (figure 4.1)

U

Wu.sec

w tg~wm m - *.E

Figure.... . velocity....components..

wW

Figur 4 .1gc v l c t co p n n

a~ ~ - b 1 - tg ( n -n (14.6) r

where

tgt = g(E+ ) tgE8 (4.7)
ww w

Therenst ai sgvnb

5 17 13



Wv y, VW --- JW NV. "" 6- V

p w 2 m 2
. - 2a(1 - W ) + a(1+4a)(1 - (4.10)

p w w
m m

Y1 2
a - .89- M (4.1

2 e

The entrainment rate E is given by

* * 0.653
E(H ) - 0.0306 (H - 3.) (4.12)

k k

6
* 

6 6 mk (.3
H

k
mink

The mainstream and cross flow shear stresses are obtained from

PUs (4.14)

9 f 2

Tt T stgE w (4.15)

where .. '

C f 0.246 Re 0 .268 T exp(-1.56 H ) (4.16)
mm T

H mk
k e mk

(4.17)

T
- + 0.72 a

T

The 'kinematic' thicknesses 6* and m are defined as
mk mik

w '* 6 (1 m

mk  0 m
Uw

6 Wm Wm-

Eqs (4.4) to (4.19) are written in the wall ret'erence system. The -

thicknesses B , 6* and 6* and the parameters b an1 n have the same

mmk 0

- 18 -
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values in both absolute and relative systems whereas the wall skewing angles [IL1

and 6 are related by the jump relations ,
uu

)abs= (t... rel 1 tgfrel abs

()(tgE tg' + ,3bs -tg

abs= rel. U /,-
a J /C

UU Uu u m :S.,

The blade mainstream defect force is found from

F w"2 3-,.:2
F . L C L .01
p 2cos aCL L1.2

The tranverse lift defect is found from

t k 2 (4.23) "-

P - s tm

in absence of a tip clearance and from

F t dw
t c u k' 2 4.2 )

p cos a m wm s s tm(

in presence of a tip clearance. The constants k and k' are given by

k 3. k'- .5 (4.25)

The cross flow thickness is defined through

w w - •
6 t m

a tm Cosa f 0-- dn

w w
S s(4.26)

2
atm = (eum- emmtga) cos a

Eqs (4.21) to (4.26) are written in the blade reference system.

The basic eqs (4.1), (4.2) and (4.3) are integrated in the meridional

direction using a fifth order Runge-Kutta method with as complementary -

relations eqs (4.4) to (4.26). The amount of secondary flow is given by the .

pitch-averaged cross momentum and displacement thicknesses, which will

used as input in the next radial flow computations (section 5).

- 19 -



5. MAIN PASSAGE INVISCID SECONDARY FLOWS

N" '.L

The ideas of the present section have been given in section 3.3. Passage

averaged secondary flow momentum and continuity equations will oe set up, in

such a way that radial velocities will be obtained including the EWBL

effects, main passage effects and main circulation changes.

The quantities which will be determined are (figure 5.1) lop

(i) the inviscid passage averaged cross flow component wu.sec inv

(ii) the difference in radial velocity between pressure and suction site rw -

[w n]+ contains a contribution from the end-wall boundary layers. It does

not contain the blade profile boundary layer and wake radial flows which

will be treated in sections 6 and 8.

1.0 J

Wm

wn

ZUWM

++..- +;

n n + .n -n,,m

Figure 5.1 Passage radial flow computation

5.1 Secondary flow momentum equation

The incompressible inviscid vorticity equation can be written as

.4.4 .4 ..4 .(5.1)

(W.V).w (w.V).W = 0

The vorticity component in the n direction (see figure 3.2) will directly be

assumed to be zero which means that the blade to blade flow is considered to

be a potential flow.

- 20 -
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1 3w 3rw
m 1 u 0 (5.2)n r a8 r am -4

integration of eq (5.2) from pressure to suction side yields "'

-[w ] -Trw - t(.3)s , + rm WLu

[Wm + represents the difference in meridional velocity between suction ant

pressure side of the blade (fig 5.1). s denotes the pitch. Taking the

following boundary condition into account

wulbla d e  tg' wmfblad e

eq (5.3) becomes

213%
I [Wm  2 1
- r 3m cos - (rw) (5. )

The projection of equation (5.1) in the direction u is of no concern.

The projection in direction m yields (see appendix A)

aw 3w 3w w w w w
mn im m + n

mam n Tn u Du n R R ) m u R u R Mnm mn urn mu
~(5.5)

3w 3w 3w W W W w %.m m m n m (u m)= m - + W -- f + W -- + w, ( n-m) + w 2--m
m m n an u 3u n R R u R R

nm mn um mu

Rij are the radii of curvature of the m,n,u lines (see appendix A).

Expressing that

n

m 0 (5.6)mu

R 0
nm

one finds

V. w
m 3m m n T m + u u m 11 R

urn
(5.7)

+ W
m a -M wu W M 'n R uR

- n u

-i - 21 -
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Pitch averaging of this equation yields

w [L [+ wLr- [W +- w 3 + WW /Ram r s m + n an m s mus i uu um

=w[- w --- .w1 + - Lw ] -+ R - w w /RWm s wm+ us m + U urm m n mn

Second order fluctuations have been neglected. q is the radial blade

inclination angle which can be assumed to be very small. Assuming w << w Mn mn

equ (5.8) reduces to

w = m w + (W - tgT wm) -- w,
m in m m u s m]+

(5.9)

- (w - tgB w ) - .I-

[~ ]I= ~ ~w] -ins-5.10The second term in the r.h.s. arises from the presence of a mainflow

velocity gradient (wu) in presence of a flow deflection ([wm] , eq (5.)).

[ I- can be found from

LW r= L -.- ai ]i (5.10) ..,'-
Lm r an r[u a u [n -r anrW

This last contribution results from changes in circulation along the blades,

since from (5.3) and (5.4)

1 a + 1 an am r (511)
ra(lw a S sin8 cosB - rWu)( I).-

Equation 5.10 is rigorous when the radial velocity is antisymmetric with u,

as will be assumed below (see third step on figure 3.2).

The averages of w and W are given by (metric coefficients are constantm u

with x
U

arw 1 3w1 r I - n - -

(5.12)

Wm rw - wn "w

22-

• . "



w aw aw&iw - W

m m

Pasageavragd uanites av ben enoedwit a in qs (5. 3) to

W

tg$ - tgn ]- + m .:

T'n s3 T m s mn %,/

1 /Rn was assumed to be small. •

5.2 Superposition of secondary flows.'."

Passage averaged quantities have been denoted with a in eqs (5.3) to . .

(5.13). Since the EWBL flows are computed separately, care must be taken

with the interpretation of each of these quantities. They are to be

interpreted as follows

The meridional velocity is equal to value detained from the through flow

computation.

w -w(5 )- -Wm w m

It does not include the EWBL velocity defect since it has been decided to

compute the viscous layers separately.

The pitchwise velocity contains an 'inviscid' cross flow component

w which arises from the main non-uniformities of the flow and which ..u. sec •i nv .

is still to be determined. At this point, it is decided to superpose the

cross-flow contribution from the EWBL (eq (4.7)) on w . In this way, fhe

secondary flow information from the EWBL computation is considered as input

for the present computation, in the same way as for w The recirculations

arising from the EWBL which extend over the whole passage area are hence

automatically included.

w =w + w + w (575)"u u u.sec.inv u.secaewbl " ""

u~-.'c..

5.3 Secondary flow continuity equation

Three unknown variables appear in equations (5.9) to (5.15)

m : the passage averaged meridi~nal secondary vcrticity

-23 -
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[w]: the variation in radial velocity over the passage

w Usecinv the cross flow arising from main flow non-uniformities .4_.

Closure can be obtained by means of the meridional incompressible

continuity equation, written for the secondary flow velocity Wsec (aopendix

A) -. ,e

n w - w -
n.sec Du u.sec -n.se 

+  R 0 (5 16).-I
mn un '_ .

It has been assumed that the secondary flow can be defined in the surface of 46

constant meridional coordinate [3] and hence w m 0. Integration of eq INm * sec,

(5.16) over one half pitch yields

2i
aw - w (m) - w + -- ) = 0 (5.17)
a n.sec s u.sec s n.sec R R

m- un

where w C(m) is the mid-pitch cross flow. Equation (5.17) cannot be used
u. sec

without some spanwise remodeling of the secondary flow components.

According to Mellor and Wood [9], the radial flow will be assumed to be

linear and the pitchwise flow to be quadratic with the passage coordinate u,

reducing eq (5.17) to

i I w ri i~(.
an wn s u.sec s 1n • R R

mn un

5.4 Practical solution procedure

The secondary flow can be solved from equations (5.9), (5.12), (5.13),

(5.15) and (5.18). In practice, equations (5.12), (5.15) and (5.13) are

combined to (neglecting curvature for simplicity)

I rs 1 I- s I1- + -m - rw5

Eq (5.19) is a one dimensional second order equation with as Dcundary

conditions a zero radial flow at hub and casing. II can eas '.' ,e solve!

with a central difference scheme and inversion of a triliagonal matrix.

Application in a straight cascade (r>>) woull reluce eq (5c9 t

,.%, 41



n Wn + 82Wn s m ;n u5.20)

which can easily be solved analytically when approaching the r.h.s. by a

constant. Following analytical solution can be found in the case of a

constant r.h.s.

an -an -.

r ] = s (w- 1 e + e 2-

n  n u m ah -ah
e + e

where

a 2/2/s
(5.22)

h - half span

n 0 at half span

Eq (5.21) is a simple result. Is has been applied to the Larguier Rotor

test case and yields a good agreement close to that obtained by solving the

full equation (5.19) (figure 9.10).

25~
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6. BLADE PROFILE BOUNDARY LAYERS

The blade profile calculation is based on an adaptation of the EWBL

calculation [3]. A 2D adaptation has been introduced in the code Q3DFLO -

described in DI], showing a correct behaviour of thie basic models used. In ~

the present section the 3D development of the profile boundary layer is

presented, which finally will yield the radial flow along the blade

profiles. The theory is developed in the meridional coordinate system which

is shown on figure 3.2 and discussed in appendix A.

The radial quantities will are determined from the the present section are

indicated on figure 6.1.

Figure 6.1 radial flows from profile boundary layers

6.1 Momentum equations in curvilinear coordinates

In the following, the flow variables denoted with a carat are those

obtained from the quasi 3D computations. The integral boundary layer

approach seeks for the differences between these variables and the real flow

variables.

The momentum equations will be derived taking wall curvature and variable

inviscid flow parameters into account.

Both real and inviscid flow satisfy momentum conservation. Subtraction

of both conservation laws yields

-26-
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p(Wv)W - p(WIW 2W'A(P+-P+) I (p-P) -I

Through the use of inviscid flow parameters as reference ones, radial

equilibrium is taken into account inside the PBL. -.

The m and n projections of the integral boundary layer momentam equation

are found to be, after considerable manipulation (appendix B)

a w2(B -X + P *am
am m M mm mm am

1 2 1 2 2 r 3
+ PW ~ +m mn Pw 2W P

R m n R m u R (mn.7)

n~P m nl R m u mu mnM - R mu 1
3 2

+ a 2W 3W

L-P w(0 A )+ Pw 5
an m nn nn m n n

(6.8)

1 21 2 1 2 r
- 2 + w iW I -2w I +W 

2 w w*
R P m mn R m uu R rn mm - R m unm un mn un

T t

where following thickness definitions are found -

(pw )8.=f (w. w.)Pw rd8

m wij o iw i

m w j 0 i-w - ; :

270



A .

6 ~
(pwl f (pww Pwiw.) rd (6.12)

-'
The ± in equations (6.7) and (6.8) indicate right or left hand coordinates.

The + sign is selected when taking wu always positive in the rotation sense.
The thicknesses A.j which appear in eqs (6.7) and (6.8) originate from ,al
variations in velocity w. These terms are of second order since these
variations are in general small and their contribution will not be
considered. Neglecting X.. reduces these equations to, after some

manipulations

a 2 a 2T pw + PWm6m + PW w + PW w

4- ~ nn -O +w*) - 1 2 ~
Wm nn m mm nR n)m mn n-nm mn (6.13)

+- (WW (a 6*) + 2U6*)R u mm m m "urn

3 2 a 2 2Pw ue + PW+* + PW =w pw 'wm m -' mn n nn

+ I1P 2 ( + * e - 1 (2 + w 6*) (6.114)RWmnm r + w nn m n m nm n mmn n

+ I- (Wu(e + 6*) + u6*) T
T P uu mm 

nun nm rn n

All the variables are written in the right handed blade reference coordinate

system and

U - wr in a rotor

U - in a stator .4.

For all approximations made when obtaining eqs (6.13) and (6.14) it is

refered to appendix B.

Eqs (6.13) and (6.14) are to be written in the blade reference system
since they are constructed from the steady Navier-Stokes equations.

-28



6.2 Entrainment and skin friction

The entrainment equation is constructed from the continuity as follows

Shh PWm +-- hmhu pwn + -- hhn Wu 0 (6.15)
m n u/i

Integration of eq (6.15) with respect to dx yields

6a6au 6 I .l]

f (h h pw )dx + f - (hmh Pw )dx + [ h = 0 (6.16)
o ax nhu m u o ax-n u mhnu o

Inverting integral and derivative, with 3h /ax =0 and h dxu  rde ,i

a- hn f6 pwrd8 - [hnrpw rx ]o

m m (6.17)

+ h pw rde - [hmrpw nL ]o + [h h pw 06 0-
ax m o n m n x o mn uo

n n

Division by h h and rearranging leads to

m n

a 6 pwrde f 6 06rO pwL P 6%
Om o 0 P m rd m m +

nm um
(6.18)

L -pwrde - fPWrd - pw L +w -[ p _W]I
On o n R o0n n an n R uo 0

mn um.

which is easily rearranged to

a+(6*) PW (6-6*) 1 16---m mn
am "m m anPm n R n~Pm( 6) -M R (6-6M )

(6.19)
w w

+ P6( ~ ) = p(6-[w ]6)
um un uo

The last term is related to the entrainment rate E as follows, s being the

streamline direction
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w [w]&

6 - [W
(6.20)

w
P s E

-- P cosa cosB

Eq (6.20) is written in the relative coordinate system. The entrainment

rate is given as an empirical function of Head's shape factor through

* .653 (6.21) -
E = 0.0306/(H -3.)6

The validity of this empirical relation is questionable in presence of

curved walls but no corrections to this equation are found in the open

literature. Since it is however shown that curvature has a strong effect on

the turbulence properties of the flow, it is believed that a correction

should be introduced in eq (6.21). No attempts are made in the present work

to correct eq (6.21) and this should be considered as a limitation in

presence of strongly curved walls.

The estimation of the mainstream skin friction occurs through the use of

a non dimensional skin friction coefficient generally denoted as C and
f

defined through

^2 -.

Ws (6.22)
Ts =C fP

Ludwig-Tillman's relation is generally accepted. This relation expresses Cf r

as function of the Reynolds number and shape factor H and is originally

given by

C - 0.246 Re- 0 .2 6 8 exp(-1.56 H) (6.23)f e
ss ,"..

where Re(es) is defined through
55

w SS (6.24)
Re8  = ..Re

As for the entrainment rate, Sumner and Shanebrook [19] analysed

compressibility effects on skin friction and showed the validity of the

following equation

- 30 -
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TCf -0.24 Re0.268( T

C 0.246 Re exp(-1.56 H ) (6.25)
f T

where Eckert's reference temperature T* and the kinematic shape factor H are e

introduced. The reference temperature T* for adiabatic walls is given by

T* Y-1 21- = + 0.72 r --- (6.26)
e

where r is the recovery factor.

Experiments show that the effect of curvature on the skin friction is not to

be neglected. These experiments however indicate that the Ludwig-Tillman

equation eq (6.25) is still valid. For different types of curved boundary

layer flows the increase in friction and in shape factor due to curvature

are related by

dCfd
d f 2.5 d (6.27)

Cf H

This behaviour is correctly predicted by the Ludwig-Tillman correlation,

since from eq (6.25) it follows that

dCf d)f dH
- 1.56 H - (6.28)

C H

Eqs (6.27) and (6.28) are practically equivalent for current values of H.

6.4 Profile models

Velocity profiles are introduced in order to close the system of

equations. Velocity profiles and boundary layer thicknesses have been

defined in meridional coordinates (figure 6.2). In this way, the

orthogonality of the basic equations is conserved and all the curvature,

coriolis and centrifugal contributions are found in a simple way. In

analogy with the EWBL profile models (section 4), following model equations

are introduced

* %"

w
- I b (1 u (6.29)

w
5
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w n- w stgci
- (1-b)tgE, (I u )nW

ww 6
3

where s lines are the projection Of streamlines on an axisymmetric stream

surface and where n lines are normal to it.

W w V
S no

wn

M n

Streamwise profile radial profilie
written In function of written In function of
u coordinate u coordinate

. 1.

figure 6.2 profile boundary layer

velocity profiles

The parameters b and n are correlated through the following relat~on 1,

-1 OnV'-C
b e f

The introduction of the model equations in the different thi-knes~e5 Is

detailed in appendix C.



6.5 Solution procedure

The following differential equations are considered

) the meridional momentum equation(

(ii) the radial momentum equation (6.1)

(iii) the entrainment equation (6.19)

Extra relations are

i) the entrainment rate equation (6.21)

(ii) the friction law equation (6.23)

(iii) the profile model equations (6.29) and (6.30),

applied in the definitions (6.9) to (6.12)

Radial momentum and displacement thicknesses are obtained, from which radial

profiles can be reconstructed through the radial velocity model equation

(6.12).
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7. WAKE ANALYSIS

The way used by both Adkins and Smith [8] and Whitfiell and Keith [30] to

analyse the wake is to consider the momentum equation at the wake centerline

and to assume a symmetric wake profile. Radial flows are characterlsed ty

the 'peaK' radial velocity at the wake center. In the present wake

approach, pressure and suction side of the wake are treated separately and

the concept of 'peak velocities' is not used. The reason for this is that

wake profiles may be very asymmetric. Pressure and suction side radial

flows may even have opposite signs, as can be seen from the experiments of

Dring C4].

The contribution to the radial flows which is obtained from the present

section is shown on figure 7.1. %

...

,. .'-

Wn

Figure 7.1 wake radial flows

7.1 Wake profiles

The definition of the wake profiles occurs in the same way as has been

done in section 6.4 for the blade profiles. The basic model equations are

(see figure 7.2)

w
1 - b f(n) = u/6 = t/6' (7.1)

w
5

w - w tga
n s (1-b)tg ' f(n) 7

w
w
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The function f is shown to be close to a probability function given by

In2 (7.3)
e..

which can be approached by [22]

f(n) = 1 - 6n' + 'n - 3n'

The wake is in general considered to be symmetric, which in reality is not

the case. For this reason, pressure and suction side of the wake will be

considered separately and a correction in its central part will be

introduced as follows, e.g. for the pressure side (+)

w
5

= - b f(n) - (;-b+) g(n) (7.5)
w

+. + +
w -w tgca

=(1-b
4.)tgE4.f(n) + (l;t - (1b)g:)~)(7.6)

nW s  ,- .. 1- t.~~n
.?.-

S + (1-b)(tga - tga+)g(n)

where the correction function g chosen as

g(n) e- n n  (7.7)

The + or - signs indicate pressure or suction sides. The overbars indicate

mean values such as

Sb+ b (7.8)2

These profiles are illustrated on figure 7.2.

The function g corrects the profile in the neighbourhood of the centerwake

and makes a bridge between pressure and suction sides. At n=Q, the

velocities reduce to (for both sides)

w
= 1 - (7.9)

w

w
n - -- (1-;) (tgt + tg 2  (7.' 0

w

53
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ri=0.001
1=0.0 1

1=0.2

0.21

Figure 7.2 wake profile model

For small values of no, Pressure and suction side of the wake conserve theirS

identity, at higher values both sides are mixing together and the wake shape

becomes more symmetric. High second derivatives are present around the

centerline and the asymmetry gives rise to a diffuse mixing between pressure -

and suction side of the wake. Hence no, can be approximated by

'

0.... -(.

where Am is the distance from th~e trailing edge.

7.2 Integral wake momentum equations

Since pressure and suction side of the wake are considered separately,

two sets of equations are used. These equations can be shown to be exactly

the same as the blade momentum equations (6.13) and (6.114). Due to

asymmetry, the friction terms in eqs (6.13) and (6.114) do not disappear, as

-36-
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long as b * b and tgE tgE . The friction is given by (with n=O)

T s s s a s
Sp it - n Ws

P T, w
S

w
s 1 b (7.12)

w+
V 5 1 (b- b)

6' 2fIo

T aw w w
n n s a n

p at ' n
w
s (7.13)

w
s 161 I ((1-b)(tge + tg; - tga 4) - (1-b")tgc 4  

T tg a+

The pressure and suction side frictions are related by

T -T
S 7.14)

4. -

n n

As a consequence, the friction tends to decrease the difference between

momentum thicknesses at pressure and suction side.

From equations (7.4) to (7.11) it is possible to determine all the integral

thicknesses, defined through eqs (6.9) and (6.11). The corresponding

expressions for the wake thicknesses and their derivatives are listed in

appendix D.

7.3 Local wake decay equations

The decay of the center wake velocity is determined from the center wake

momentum equation which can be written as (see section 5.2)

-( )+ p(.A)4 2WA(pW-pw) = -(p-p) +(_ ) (7.15)

- 37 -
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Assuming wn small and 3uWm = 0 at the wake center, the meridional 2omponent
can be found from (see appendix B)

3w Dw W w
e .(W = w + -- w (-
m m am u am u R Rum Inu

m ui = W -- Rim am ITum

um.

em .2WApW : ± 
2w C pw (7.17)mR u

um-

e = p 2  
(7.18)

Using eqs (7.16) to (7.18), equation (7.15) reduces to

w1 (7.19) .
Wm m + (- wu) - L(w u+ ) = - T 32 (.)

um

Applying eq (7.5), and neglecting the curvature term for a while, one can

find, for n-0 at pressure side

A2 - +f'+ ( b) gw1 (7.20)w b(2-;) - w (1-b) - w -2 (b + b+ )m am m 3m m 62

The term in g"(0) gives a discontinuity in the second derivative when going

from pressure to suction side. Taking the average over both sides and

equation (7.4) for f (f"(0)=-12) one can write, for

13b ; 12v (2-b) 1 m (.1
= - -w -X- (7.21)

a 3m (1-b)6w (1-b) w mm m -.

where a mean value for 6 is defined as

2 2 2 (7.21a)

Expressing the momentum equation (7.15) in n=0, only one equation is

obtained for both sides. This equation describes the mean wake velocity

defect.
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In order to obtain more information about pressure and sucti on side ':

mixing, a relation is searched between b and b This relation is obtained

by writing eq (7.15) in nj, where n, is such that

1 f,>> g' •

n, is a point close to the wake center but which is not influenced by the

other wake side. In this way, eq (7.15) reduces to, for tne pressure si:e

and suction side

+( w -2 ab + (~, b 1 g}?-.

b2-b + w2 (1-b+) T r " +- (b-b)g

m am m 3m m.
(7.23)

ww b2 - b bfn(-b(2-b-) m + w2(1-b -) - w (bf'; + (b-b) gf.
m am m 3m m

4°. -

and, taking the difference, with Ab b - b

w 2 - Ab ^2 3b ( v '72u)
w2(1-b) bb - + w (1-b) L - w Ab L = w Ab - )
m m m am m 3m m.

Hence,

3w
4 3Ab vAb (g" _ + Ab b - 2 1b 1 (7= 2 (9 m (7.25) :::

3m - Wm(1-b) (1-b) am w m
m wm

and taking eqs (7.4) and (7.7) for f and g yields, with eq (7.22)

SAb 12 v 1 ab 2 3w (7.26)

Ab 3m 62w (1-b) (1-b) 3m w 3m
m m

In a very similar way, by considering the projection of eq (7.15) in th.e n

direction, one can find

3w -

12 v _1 __s (7.27)

A(tg+tgE) A(tgtg) - w (1-b) w 3m

Eqs (7.26) and (7.27) close the system of wake equations, the only unknown

left is the eddy viscosity coefficient v which is obtained from
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v = K6bw (7.28)

The coefficient K is to be calibrated.

7.4 Practical solution procedure

Six independent variables are present in the wake equations

6 , 6 pressure and suction side wake thickness

b b: pressure and suction side wake velocity defect

E, e pressure and suction side skewing angle

Closure is obtained with the following differential equations

pressure and suction side eqs (6.13)

integral meridional momentum expressed at

pressure and suction side

sum of pressure and suction side eq (6.14)

sum of the integral radial momentum expressed at

pressure and suction side

equation (7.21) local meridional momentum equation along wake center

equation (7.26) difference between local meridional momentum

equations expressed at pressure and suction side

equation (7.27) difference between local radial momentum

equations expressed at pressure and suction side

The two radial momentum equations (6.14) could be considered at pressure and

suction side separately, making equation (7.27) redundant. In practice,

numerical instability was however observed when using the radial momentum

equations separately at pressure and suction side. This instability is due

to singularities in the Jacobian matrix which relates the momentum

thicknesses with the wake parameters b, 6 and tgE. in particular, it was

found that the profile model equations are not very sensitive to the

difference Atge and the radial momentum equation (6.14) has therefore been

expressed over the whole wake. This equation mainly controls the mean
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skewing tgc and T dissappears from the system of equations. Equation

(7.13) for tr is not used. %
n

New parameters which appear in these equations are the integral wake . %

momentum and displacement thicknesses, the central wake shear stress T : % -.

mixing length n and a diffusion coefficient v. These extra parameters are

found from

equations (7.5) and (7.6) : wake velocity models which allow the

determination of the integral wake thicknesses

equation (7.12) stress from the model equations

equation (7.11) model for the mixing length vo

equations (7.28) model for the diffusion coefficient n

. - -

The meridional profiles are modeled by 5 , 6 , b , b . These variables are

the main parameters of the two meridional integral equations (6.13) and

meridional local equations (7.21) and (7.26). The radial profiles are

modeled by the skewing angles E and e The difference AtgE is controlled

by the extra equation (7.27).
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8. TRAILING EDGE AND NEAR WAKE

The wake equations as discussed in section 7 are not directly applicable

in a region very close to the trailing edge, mainly because of the presence

of strong pressure gradients which are not considered in the momentum

equations (6.13) and (6.14). A detailed description inside this region is

not considered, since the complexity of the computation is not in proportion

to the gain in information. Direct jump relations between the momumtum and

displacement thicknesses at trailing edge and downstream wake are therefore

searched.

These relations are based on work of Kool and Hirsch [20]. The pressure

recovery from trailing edge to the downstream wake center is proposed as

[20]

C = 0.3 (1 - 56 C ) (8.1)

p q

where

tot tot
P -Pte (8.2)C - _" "_ _

p pW 12

8te
C (8.3)q XR + x

x 0 81 te (8.)-

x R 5.6 rte

R - downstream stagnation point

te - trailing edge

Application of these relations in the wake momentum equations yields [20]

a - 1.45 e + 0.1 rte (3.5)
R te t

It is clear that this relation cannot be valid for the complete range of the

ratio rte /8e. For very small trailing edge radii, one should in the limit

find

.'42.
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8. TRAILING EDGE AND NEAR WAKE

The wake equations as discussed in section 7 are not directly applicable I
in a region very close to the trailing edge, mainly because of the presence

of strong pressure gradients which are not considered in the momentum I

equations (6.13) and (6.14). A detailed description inside this region is

not considered, since the complexity of the computation is not in proportion .i

to the gain in information. Direct jump relations between the momumtum and

displacement thicknesses at trailing edge and downstream wake are therefore

searched.
[%*

These relations are based on work of Kool and Hirsch [20]. The pressure

recovery from trailing edge to the downstream wake center is proposed as

[20]

C = 0.3 (1 - 56 C ) (8.1)

p q

where

tot tot
P P te (8.2)

C =
p pW/2

ete --...

q = Rte(8.3)Cq xR + Xo 0,

Xo 81 te -(8.4)

x R 5.6 rte

R - downstream stagnation point

te = trailing edge
"% 

Application of these relations in the wake momentum equations yields [20]

a R  1.45 8te + 0.1 rte (8.5)

It is clear that this relation cannot be valid for the complete range of the ',

ratio r /8te For very small trailing edge radii, one should in the limit
te te*

find

e R = te(8.6)
R te ..
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Experiments [20] indicate that eq (8.5) is valid from rte/6te ' 10 on. For

lower ratio's a simple linear interpolation between eqs (8.5) and (8.6) is

proposed through

eR 8 6te(1+0.045r te) .01 r te/6te (8.7)

The momentum thickness is not sufficient as information to determine the

wake profile downstream of the near wake region. According to Kool and

Hirsch [20], one should take b close to 1 according to the existance of a

stagnation point inside the near wake. b should however not be regarded as

the real velocity defect, but rather as a parameter in the model equation eq

(7.1). This parameter probably deviates from its physical meaning in the

near wake and it controls the whole outer wake, where the profile boundary

layer history is still strongly present. For these reasons, it is proposed

to keep the physical thickness 6 as a constant value in the jump over the

trailing edge, rather than imposing an arbitrary value for b.

A third jump relation is required for the radial flow thicknesses.

Assuming no particularities in the radial pressure gradient in the near

wake, one can assume the radial momentum to be constant.

In conclusion, the jump relations can be written as

6 =f(6 ,r)
mm mm,te' te

6 - 6te (8.8)

6nn e nn,te

where eq (8.5) or (8.7) apply for the first relation
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9. RESULTS

Three test cases were considered at present an isolated airfoil wake

which is two dimensional [23], the Larguier rotor [5] and the Dring rotor %
9.4].

9.1 Isolated airfoil [23]

The isolated airfoil case is used to test the wake equations in the

two-dimensional case for both symmetric and asymmetric flow behaviour. The

airfoil is a NACA-0012 airfoil, experiments are available at 00, 50 and 100

angle of attack. Results are shown on figures 9.1 to 9.6. Figures 9.1, 9.3

and 9.5 compare the experimental and the computed wake displacement and

momentum thicknesses, on figures 9.2, 9.14 and 9.6 the corresponding wake

velocity profiles are shown. The wake thicknesses are compared separately

for the pressure side, suction side and total wake. The asymmetric results

show the correct transfer of momentum from the thicker suction side to the

thinner pressure side of the wake (figures 9.3 and 9.5). The transfer of

momentum occurs only through the shear stress T which is computed from

equation (7.12), indicating a correct estimation of no through equation

(7.11). The coefficient K is found to be 0.01. .

The wake profiles (figures 9.2, 9.L4, 9.6) show the correct behaviour of

the model equations (7 .J4 ) to (7.7) for downstream positions of 5, 10 and 20

% chord distance from the trailing edge. At shorter distances 0.7 and 2 % 9

chord, a better agreement cannot be found since the wake profiles are still

closer to the boundary layer profile shapes than to the Gaussian wake shape.

Attempts to define a transition region in the near wake were undertaken, but

the gain in information is not in proportion to the increase of complexity

required. The transition region between profile boundary layer and wake

computations is rather to be bypassed by the use the jump relations 8.8.

9.2 ONERA rotor [5]

The ONERA rotor has been considered as a test case for radial mixing

% computations by several authors [8,30]. Results are presented near the mean

diameter at 30 % axial chord distance downstream of the trailing edge. The

blades have radially constant solidity and no twist, giving rise to a a

substantial central secondary flow.~

Lablade 
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The results presented in this section are obtained by a full computation,

without any input from the experimental data. The ONERA rotor was treated

by a Quasi 3D code which yields all the input required to run the EWBL, main

passage secondary flow, Profile Boundary Layers and wake computat'.cns.

The new elements which are tested at this level are the profile 'boundary

layer computations which result in the entry conditions f ,'re waKe

computations, and main secondary flow equations 5.9 and 5.18.

The result obtained at trailing edge is shown on figure 9.7. It is to be

observed that the radial velocities observed in the Larguier rotor are .

mainly due to its non-free vortex design. The contribution from EWBL and

profile boundary layer secondary flows is very small, as can be seen from

figure 9.8 where the vorticity urn was taken zero.

Figures 9.9 and 9.10 compare the experimental wake profiles with computed

results. The differences between computation and experiment lie within the

differences observed in [51 when different types of anemometers are used.

9.3 Dring rotor [4].

Extensive measurements were made by Dring et al [4] downstream of a

single rotor blade row. Velocity measurements are available at four

downstream stations, at several radii. Measurements were made at four

different flow rates.

It is the aim of the present work to predict these results through a total

computation (Quasi3D, EWBL, PBL, cen ral secondary flow, wake). The profile

boundary layer computations however predict trailing momentum thicknesses

which are far too small (7 to 10 times the observed values) and at present

this problem has not yet been solved. The underestimation is due either to

an inaccurate estimation of the velocity gradients along the profiles,

either to the presence of separations near the trailing edge, which may

cause a momentum loss which is much larger than the one predicted through eq

(8.5). .,.,

At present, the testing of the Dring rotor is therefore limited to the 3D

wake computation, using the first experimental station data as input.

Results are presented at two different flow rates ( 0.65 and C = 0.85)

on figures 9.11 and 9.12. These figures compare the obtained meriJional and

i1.,
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radial flow velocities with Dring's data, at three radii. The lowest flow

rate is close to the stall limit, whereas the higher one gives a certain

amount of secondary flow due to non-free vortex behaviour. A quite good -

agreement is in general observed. The value for the dispersion coefficient

K in eq (6.28) was however to be increased considerably for toe test case

close to the stall limit, which can be explained only by an important

increase in turbulence.

A strong radial flow is observed experimentally inside the wake close to the

stall limit. Such a strong radial flow is not found when applying the

profile boundary layer equations. it is probably due to separations in the

neighbourhood of the trailing edge, causing a stronger wake centrifugation

at this place, as stated by Dring et al.

The total radial recirculation due to the non-free vortex behaviour at the

higher flow rate appears to be more important then the wake radial flow

itself, indicating that strong radial mixing effects are to expected in

off-design conditions.

k-
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CONCLUSIONS

The main tools required for the prediction of the radial flow

distributions in a compressor stage have been developed in the present

report. This theory is based on the superposition of the different

contributions from end-wall boundary layers, profile boundary layers, wakes

and main passage secondary flows. All the viscous aspects are treated by an

integral approach where velocity profile models are introduced. The

inviscid secondary flow behaviour is obtained from pitch averaged vorticity

and continuity equations.

The behaviour of the asymmetric wake and of the central inviscid secondary

flows are well verified by experiments. The behaviour of the EWBL flows are

treated elsewhere [2,32. The profile boundary layers is applied in the

Larguier test case, where a full computation has been done. No direct

comparison is made for the Profile boundary layers however.

Strong radial flows are induced by a non-free vortex behaviour,

indicating possible strong radial mixing effects in off-design conditions.

Strong radial flows are also observed in the wake, close to the stall limit,

these strong radial flows are not predicted by the profile boundary layers

equations in the present state of the project.

In the present state, the theory which has been developed seems to be

able to predict the radial flow in a reliable way when no important

separations occur, as can be expected at design conditions. In this

situation radial recirculations should be due mainly to the EWBL and PBL

cross flows. Through the approach which has been used, all the secondary

flow aspects are implicitly or explicitly present in the radial flow

prediction, including effects such as a tip clearance through the EWBL

theory.

- "o,
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FUTURE WORK

The main part of the radial mixing theory lies in the prediction of the

radial flow intensity, which implies a total Knowledge of the secondary

flows in a turbomachine.

Each aspect of this secondary flow prediction is to be tested separately,

which has not been done for the profile boundary layers equations yet.

Recently detailed Profile Boundary Layers experimental data have been made

available [24,25] and a separate testing of the profile boundary layers will

be performed.
j'.-

Once the radial flows known, the mixing process itself can be described.

The main difficulty is to balance the contributions radial mixing due to

convection and mixing due to turbulent diffusion when calibrating the two

contributions. This will be analyzed in the final report.
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APPENDIX A MERIDIONAL COORDINATE SYSTEM

A.1 Some notions of curvature

In the present appendix some notions of curvature are reviewed and

applied to the vector operations such as divergence and rotation.

It can be shown that in each orthogonal coordinate system, a set of

coordinates x1 ,x2 ,x3 with unit vectors e1 ,e2 Pe3 can be defined in such a way

that all the surfaces xl-cte, x2 =cte, x3 =cte intersect in three orthogonal .

curves. X1' x2 and x3 , as well as their dimensions, are a priori unknown

functions, except for special cases of orthogonal coordinates. In a

cylindrical coordinate system for example, x1 ,x2 ,x3 are found to be x,r,e

with as dimensions L,L,I.

The length 61i along the coordinate line 6xi is by definition given by

61. = h.6x. (A.1)

where h1 ,h2 ,h3 are the lame or metric coefficients, which are also a priori

unknown functions (e.g. the cylindrical coordinate system h1 =h2=1, h3=r)

3

Figure A.1 Elementary volume in curvilinear coordinates

The gradient operation can easily be expressed in a curvilinear
coordinate system, since from
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it easily follows that

e + e 2  + e 3) $ (A.3)171 1 2 eI - 2 3 T-l 3 "%

When applying the nabla operator to a vector or a tensor, derivatives of tre

unit vectors e. however appear which are non-zero due to curvature. Hence

correction terms in general appear when applying equations of motion i', -

.

curvilinear systems. In order to determine these corrections, the general

definition of the nabla operator will be introduced [Milne] (fig A.1)

=lim .X dS (..,)
V~o 3

where X denotes as well a scalar as a vector or a tensor. Choosing an

elementary volume dV with dimensions h.dx., and applying eq A.4, it is

easily found that ".-'

V1. [ h h V + h h V + - h V ] (A.5)
S hh 2 h3  ax 2h31 ax 13 x 3  1-23

3 1 2 3

h hh ax 2341 +3x 1 32 ax 123
1 2h3 1 3

From eq A.5 it follows that e.g. for e.

7. h h h h (A.7)I -- hh h 3  2x 3.,,%

1 23 1

Hence, eqs A.5 and A.6 can be rewritten as (sum over i and j)

aV. +V V,'$,
al. 1

e 1j+( T0e)
- 3 1 ij 1 1 1 " -

4
where -r. = t..e.

In eqs (A.8) and (A.9), the correction terms due to curvature appear as

functions of derivatives of the unit vectors.

Since the length corresponding to 6x. is h.6x., it can easily be seen

- 61 -
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from fig A.2 that for example

1 1 1 (A.1O)

1 e
h2 ax2  -

where R is the radius of curvature of the plane curve obtained by

intersection of the surface x1 =cte with the plane (elF6el ), or (e1 , e2) (fig

A.2) According to the theorem of Meusnier, this radius of curvature can be

related to R2 the principal radius of curvature of x2 through (fig A.2)

R
2

R21 cosa2 1  (A.11)

21F

821 is the angle between eI and the principal normal of x2.

e2 h 2 dx2

3 R2xX
'2

221

e 1 ,e.

Figure A.2 Radii of curvature in curvilinear coordinates

From eqs A.7 and A.10 repeated for each R it can be shown that e.g.

for e

1 1 1 e_ 1 + (A.12)1 - = R12 e2 + Re 3
R -

h Iax1 1 1 3

Vel R3 (A. 13)
1 R21 R31

Hence, if all the radii R.. are known functions, the correction terms in eqs

A.8 and A.9 are known, while the functions x. and h. can -principally- be A

determined from

-62-
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R h.h. ax.

JJ

A.2 The meridional coordinate system

The meridional coordinate system is illustrated on fig 3.1. In general

curvature is present in both circumferential and meridional directions. The

corresponding coordinates are m,n,u where m denotes the meridional

direction, n the direction normal to the end-wall and u is the pitchwise

direction. m, n and u are defined as lengths. The independent coordinates

are denoted as Xm, x and x and the corresponding metric coefficients as
m n u

h m , hn  h u •

The direction u is taken positive in the direction normal to the profile

walls, while n is always taken positive from the hub wall. Hence, if the

pressure side coordinate system is right handed, the suction side coordinate

system will be left handed, and vice-versa.

According to the theorem of Dupin, the system of coordinates m,n,u is an

orthogonal coordinate system, since the m and u lines are lines of principal

curvature. A rigorous development in non-orthogonal streamline coordinates

is not considered.

The different radii of curvature of the coordinate lines along the blade

profiles are found to be (fig 3,1)

1 1 Go1+ (A.15)
mn m [-n'

R 
0

mu

1 1 _ Im (A.17)

nm n

=0 (A.18)R
nu

1 1 D r s in a
1 - r n sir (A.19)Ru r 9m I

urnn

1 1 3r cos(

R r DnIm r
un
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According to section A.1, the knowledge of these radii allows the

application of any vector operation in the meridional coordinate system.

From eqs (A.14), (A.19) and (A.20), it follows that

x = (A.21)
u

h = r (A.22)
u

h , hn, x and x cannot be determined explicitly for an arbitrary wallm n m n kshape. Due to axisymmetry, it however follows from eqs (A.14), (A.16) and

(A.18) that

3h 9h m. n

in 0 (A.23)
ax 9x

u U

It is to be observed that eqs (A.15) to (A.20) are valid in both pressure

and suction side m,n,u coordinate systems which are respectively right and

left handed or vice-versa. Care must be taken when chosing the sign

convention of a.

6.
qO
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APPENDIX B MCMENTUM EQUATIONS IN CURVILINEAR COORDINATES

In the present appendix, the momentim equations are reconstructed taxing

wall curvature and variable inviscid fl:w parameters into acecInt. In the

following, the flow variables denoted with a carat - are those obtained from

the quasi 3D computations. The integral boundary layer approach seeks for

the differences between these variables and the real flow variables.

Both flows must satisfy continuity, subtraction of both conditions yields

(in the blade reference system)

- pP ) = (B. 1)

According to eq (A.5), eq (B.1) can be written as

h nhu (PW - )
m

+ - h (pWn- Pwn ) (B.2)ax 'm u n n
n .

Lhmh (p ) =
ax mn u
u

Eq (B.2) will be integrated over the boundary layer. The integration of eq

(B.2) yields

X u6 3 X Xu6 3 ~ ~ X ..
f ' hnhu(pwm- pw )dx + f - hmhu (PW - pw )dx
o ax hnu rn m u o ax mu n n um n (B-3)

+" [hh (PWu pw u6 -O 0
mo n

where

w = 0 at x = 0
u U

(B.4)

W =W at x = xu 6u u6

Using eqs (A.1), (A.21) and (A.22), eq (B.3) can be rewritten as

65-
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: ;, ; :; ,_ .,;n=. ., - .- ... - - .j j,, x . - - -, % - - .

[hhpw]w= m f (Pwm- pwm ) h rd8 -
mnu w x o m_ m nm

(B.5) ..
3 o Pw n- pwn h mrd

n

The subscript w stands for 'wall'. It is to be observed that the I

derivatives have been put outside of the integral sign in eq (6.5). This

may be done since the function to be integrated becomes zero at x (6).

The momentum equation 3.3 for variable inviscid flows is to be rewritten

.as

+, * , ^, - (B.6) I
P(WW- p(W) + 2WA(pW'-pW) = - p(P-P) + P(T-T) .B,'.

In eq B.6, the difference in momentum between the inviscid and the real flow

is equated. Through the use of inviscid flow parameters as reference ones,

radial equilibrium is taken into account inside the EWBL. In the following

the four contributions in eq B.6 will be analysed separately.

B.1 Inertial contribution

The mainstream projection of (WV)W is found to be

w w W 3w w w w w w w
+m m n m u m - - m

e , W ( T ) + m (B.7)
m h 3x h 3x h 3x n R R u R R

m m n n u u nm mn "Im mu

Hence, taking hmhnhu times eq B.7, the e projection of the inertial.

* contribution of eq B.6 can be rewritten as

%0

5'.



h h h e W[() - p()W W

mnum

m m

mw m

+ h hL w 3W - P wm
m u n 'x n ax

n n ..

+hm hn E wu Tx - u ax P
u U

R m n m n
mn

+ L PW 2
nmn

hhn hu ~2 2
R [p up~
urn

1/R muis zero due to axisymmetry. The last three terms in eq B.8 are

correction terms due to wall curvature.

Integration of the third term in the lhs of eq 3.8 with respect to x

over the boundary layer yields

)]Xu6 3 6NN

[h ni (pw w -PWW - (1W **hh PW- w -hh P d 69
m n m u m 3 xm x m pW}uX

0 u

The first term of B.9 reduces to

- (h h pw w )~.2
m n m u wall

and, according to eq 5.1i4 to

w L (pw -w i)h h dx
3w x m m n u um

- w - pw-pw )h hdx
mw 3x n n m u La

n

According to the continuity equation B.5, the second term of 3- can Ie
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written a

f (w - hh Pw w -hh pw ix
m ax n u M m ax n u m u P. -e

M m
(B.12)

(w -a h mh nPw~ n a hn pw)n dxn

With eqs B.9,B.11 and B.12, and according to eqs A.1 and A.14, eq B.8 can

easily be rearranged to

f' x h mh nh e [(V)W p.,- d

ax (w -w )pw hrde T f (Wm- wm )(pwm- pwm) h d

m m

" -f (w -w )pw h rd8 f (w - w )(pw Pwn )h rde
ax m- m nr ax mw m n

(B.13)
aw a w

" hn f (Pw-pw rdO + h - f (pw-pw rd6
nm m ma3x n n

m n

h h h h
fnn (pw w pw w) rde +fn (Pw2  pw) rde

R m n m n R n n
inn nm

h mihn ~ 2 2
+ T-- f(pw - pw) rde
urn

In a similar way, the spanwise projection of' the inertial term is found

to be
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f (wn  Wn)PWmhnrd8 f w w)Pw p d

ah rd6 w- d
"xm  (wn- )Pwn m- (w- w )( pw m- ) h rd8aw n a -n---

aw aw-Wnw ^ ̂ wWnw ( p'.r+hn -x f (pw m- PWm ) rde + hm -x f (own- pw n ) r'dO (3.14)

nR m m n nhh ^^^h h )
n (PWwn -.PWmWn) rde --f"(PWm - Pwmrde^2 w

nm mn

hhh mn f ^2 2) d
f(Pw -pw u rd6

un

B.2 Coriolis contribution

The second contribution in eq B.6 will now be integrated over the

boundary layer. This contribution which represents the coriolis effect can

be rewritten as

2A(pW - pW) = 2w (pw - pw ) A e

(pw n pw ) .A e.nn- n) ex n

(pw- pwu ) e A e-

where

+ "*

e A e sinoe --- e
x m R u .

e xAe = ± coso e = e (.15)
un

e - - r r
eAe =-e =-sino e - coso e = + e m e

X U + y + m4.  n - m R nIm un

Eq B.16 may be written in both pressure and suction side coordinate systems,

the upper and lower signs correspond respecively to right and left hande -

coordinate systems. According to eqs B.15 and B.16, the m and n projections
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of the coriolis term are found to be respectively

r (B.17) -

+ 2w(pwu - pw ) r

_ 2pu - Ou ) R B.

un

As for the first contribution of eq B.6, eqs B.17 and B.18 are multiplied by .

hmhnhu and next integrated with respect to dXuover the boundary layer giving,,';

respectively r- .

rA

+± 2w h hh f ( pw u  pwu  rdO (B.19) ]

u u u

um ''

_+ 2wnu:n h m h n  ( pw u  pwu  rdO (B.20)

unn

B.4 Shear stress contribution -"J

.. -- ' -

The last contribution which is finally to be analysed is the shear stress

contribution. According to eq A.6, this contribution can be written as (sum

overr

h h h V - e + L e + L h h T e ].[

L 2 w h ~ wp~d e+19

m n u ax m n u m n a x n m u no a ax u m n uJ

e - h h f + h h T (B.21)
nj ax u m n uJ.

4':

ae. e. De. " -

n u mj x m  m u nj x n m n uj au

The meridional projection of eq B.21 is found to be, according to A.10, A.12str

h h h e .7e h h + L h h T + -hht "

m n u x mm nxmn m unm ax u m n um

(3.22)nn mn uu
h h h - +-.]]

n m um

Written as a defect and integrated over the boundary layer with respect to -

dx the mainstream contribution of te shear stress terms is easily found tobacrn t .0.

m u
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be

.7(T-T)dXu = - T - Tmm)h rd O  )hrd
m mm n x nm nm ]

+ Thh(t- T (B.23)
Lhm hn (Tum urn 0

T - T T - T
+ f nn nn mn mn + uu uu )h h rdR R R hhmn

nm mn um

only the central term is hold, assuming the other terms of smaller order of'

magnitude. Assuming the shear stress tangential at the blade wall, the

blade shear stress T can be written as

T s = 1mCos$ T + 1 sina T (B.24)
rn s u s

On the other hand, T can be transformed from the other shear stresses
S

through

Ts  Is T

(B.25)

Ts T u Cos$ T m Sin ( um1m T uuIu)COSB - (mm1m T mu u)SinB

Hence T is found to be given by

S Ttg -T+ /tgum mmmu u
um mm mu (B.26)

s um
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APPENDIX C INTEGRAL BOUNDARY LAYER PARAMETERS --I

In this appendix integral boundary layer parameters are listed as

functions of the boundary layer parameters 6, n, b and tgE' . The thickness
w

6 is not an independent variable and it is shown how it can be eliminated.

Basic thicknesses are expressed as direct functions of these parameters, and

others are derived from the basic thicknesses. The different components of

the Jacobian matrix are listed. All the equations are written in the

meridional wall reference system.

The basic model equations which are used are remembered to be

w
1- b 1- )n (C.1)

w
5

w n - w stg n.J1
n = (1-b)tg ' (1 - ln (C.2)

w

with as complementary relations

b - exp(-10n VC ) (C.3)
f

Cf-- .2416 Re .268 T -1.56H (C. )
ss T

The meridional thicknesses are defined through

-2-

PWOij= f 0 (w.- wi)pw.rde (C.5)

*6
pw f ( pw ) rde (C.6)
mi 0 1 -.

The integrations in C.5 and C.6 are taken along u lines. Working along

lines normal to the blade surface yields following expressions

w 8[j. 6' (w- w.)pw dn (C.7)

Pw 6' - 6'f (pw- pw.) dn (c.8)
s 0 1
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According to eqs C.1 to C.8, it is easily shown that

8' 6'b (f - f (C.9)
ss 1 2

6' = 6bf (C.10)
S II

where 2
f b (C.11)

The other thicknesses are easily found to be

6' = 6' (tga - 1-b tgEw) (C.12)

n1b w

e' s (tga - -b tgEw) (C.3)ns ssb w

=' e' (tga -b tgew) (C.14) ,4.

nn sn b wC.14)

sn (tg -Lb tgE w ) + 6'* -btg (15)

sn ssb ws b w

1-b 6* 1-b "
0' e' (tga -- tgE w ) +6' - tg w  (C.16)nn ns w n b w

The relation between the two sets of thicknesses is found from

rde = 6'dn/cos"

w - w COSB
m s (C.17)
w - w sinS
u s

Application of C.17 in the different definitions yields

'I'
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6 = 6'/cosa

2w2 w w 9'

m Mm m ss)_

2 2 w 2•
m nm s ns
28  2.r

w e w e' (C. 18)
m mn s sn

2 2w W 8' /Cos$-1m nn sn

w 6* =w 61 m m s s @

w P* - w 6'*/cosB
m n s n

Using eqs C.9 to C.18 all the classical thicknesses can be determined

from the knowledge of n, b and 0. The shape factio H is to found fromw

1 - b n+I (C.19)
2n+1

The independent variables which are used in the method are defined as

follows

{q} = { in(-lnb) , In(n) , tg W  (C.20)

The corresponding components of the jacobian matrix J between the

thicknesses and the parameters q are obtained as follows. Differentiation

of eq C.4 yields

d(pwmem) d(Pw w ses) dC dpw'
M mm M msss f .- 3-73 -- - 5.82 dH m (C.21)
m mm m s ss m

where, according to eqs C.3

dC
- 2 d[ln(-lnb)] - 2 d[ln(n)] (C.22)

Cf

which explains the choice of q in eq C.20. dH is given by 'U'

dH H 2 2n+1 db 2 1.
n 1 b 2n+1 n*1 n

f (0.•23)

2  f2 
2 1

H ( inb.d[ln(-lnb)] - +I n.d[n(n)]
fn+ n d1nn)
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Hence, the derivatives of pw2 m are found to be
m mm

fpw 2a = P im2e[74627 5.82 H 2 f2 lb (24

2 W82 2 2 -1(;zq2  m mm [7.4627 5.82 H (  )nj (C.2532m mkf 2n+1l n ,,-,

pw 2  = 0 (C.26)

am rnm ~ 1apwm
pw2B = pw28 - (C.27)m mm m mm pwm  m

m

The derivatives of pW2  are found from eq C.18 and C.23.
m nm

2 2
mnm s sns ""..

Sw2, ns
S ss a, (C.28)

ss

w
= pw 9 .- (tg - tgs-)

m mm w b wm

derivation of, in logaritmic form yields

d(pW2 n) d(pw2 8 ) w 8 1,b
mnm m mm smm d b

m nm m mm m nm (C.29)

-

+ Cosa d

a 2e 6nm a 2 Lnb
PWm nm + -PWm + s tgw (C.30)3q m nm Tmm 5q l~ mm 3 m .mm w

a . 2e nm a 2 o (C 31)

a q m n T9 Tq wmm-..
2 mm 2

a 26 1-b%
m 1 b ms Mm ',3," MM

3

a 2 n 3 - -,-
p n2e m P wm m + PW Ws( a cosB) (C. ?3)

SPWmnm mm mmmm W mmintg M all
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The derivatives of 6-6" finally follow from the definition of H*
m

d(pwm(6-6*)) d(pWm dw
M mdH* rn

PWm(6-6*) Wm H* w
m mm mm M

Differentiation yields

aI a 1W8 H*

Dw m-6) p b inb H* ) (C-35).,.
-ql w m (  Pm " " q m mH*T

3 3Cp39

The derivatives of H* are found to be JON,

1 aH* 1ff- 2
H* nb 1 - bf b(f- f2  (.39)

'Ni',

a f af-a f
3 H* ni n1 n 2
Ta 1-bf1  f- f (-40

.
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APPENDIX D INTEGRAL WAKE PARAMETERS

In this appendix integral wake parameters are listed as functions of the

wake parameters 6, b and tg w'. Basic thicknesses are expressed as direct

functions of these parameters, and others are derived from the basic

thicknesses. The different components of the Jacobian matrix are listed.

All the equations are written in the meridional blade reference system.

The basic model equations which are used are

+ -+

- = 1 - b f(n) - (b-b4 ) g(n) (D.1) %

w

+ +

w wstga +
(1-b)tgE f(n) + ((I-;)(tgE + tgo L tga ) (1-b+)tg+)g(n) (D.2)

w
5

where

f(n) = -6 + 8n' - 3n' (D.3)

-n l n o ( D .4." " "-
g(n) e

1o VA/ (D.5)

where neshould not exceed about .5. Thicknesses in streamline coordinates

are defined through 4.._

Pw26!- 6'f (w.- w.)pw dn (D.6)S ii 0J "

PW61 6,fI (pw PW) dn (D.7)
s1 1

According to eqs D.1 to D.7, it is easily shown that %%

6' I + I (D.8)
s f g

S6' -I -I -21 (D.9)
ss s ff gg fg
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* ,* If Ig -

6' 6' tga -f (D.10)
n S

f i f  ig

+ + I + I (D.11)

'sn I f If g g

= e' + 6' - 6' tgc (D.12)oS sn n s

= (e' + e' - 8'stgatga - Iff - Igg - 
2 1fg (D.13)flnl Sn flS S_

where

I f 6 f fg dn (D.14)If = f ,v

w
- 1 - %ff(n) - gg(n) (D.15)

w w tga "-
n ff(q) + gg(n) (D.16) p.

w
S

f= b

& b-b
g (D.17)
if

f (1-b)tgE
C -

rg (1-b) (tgE + tg - tga) - (1-b)tga

using eqs D.3 and D.4 for f and g yields

2
2 2 'ff dn =

Sff2drn - 2 
,

7

fg dn = no (D.18)

fg2d = Do
2

3 '45
ffgdn = no - 12n 0  48no - 72no

The meridional thicknesses are found from (see appendix C)
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rd8 = 6'dn/cosB

w = w cosB (D.19)

w = w sin.
u s

Application of D.19 in the different definitions yields

6 = 6/cos8

4 2 4
w2 w w 6'
m mm m s ss

2 w2
m nm s ns

2 2
we =w ' (D.20)
m mn s sn

2 2w8 = w e' /cos*m ann ws 6 n .|

w 6* w 61*m m s s

w 6* = w 6'*/cos-
m n s n
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